

Name: _____

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2011

HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 2

Mathematics Extension 1

TIME ALLOWED: 1½ HOURS

Outcomes Assessed	Questions	Marks
Manipulates algebraic expressions to solve problems involving	1, 2, 4	
inverse functions		
Applies appropriate techniques to solve problems involving	3, 5	
parametric representations		

Question	1	2	3	4	5	Total	%
Marks	/10	/11	/9	/12	/10	/52	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

Question 1 (10 marks)

- a) Differentiate with respect to $x : y = cos^{-1}(3x-1)$.
- b) Find the primitive function of

i)
$$\frac{1}{1+3x^2}$$

ii)
$$\frac{x+2}{x^2+4}$$
 2

c) Evaluate
$$\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$$
 2

d) Without evaluating the integral explain why
$$\int_{\frac{-1}{2}}^{\frac{1}{2}} sin^{-1}x \, dx$$
 is equal to zero. 1

e) Show that
$$tan^{-1}x = cos^{-1} \frac{1}{\sqrt{1+x^2}}$$
. 3

Question 2 (11 marks)

a) Consider the function $y = 2\cos^{-1}\frac{x}{3}$.

Question 3 (9 marks)

a) The tangent at $P(2ap, ap^2)$ on the parabola $x^2 = 4ay$ meets the x axis at T. The normal at P meets the y axis at N.

	i)	Show that the equation of the normal at <i>P</i> is $x + py = 2ap + ap^3$.	1
	ii)	Find the co-ordinates of M , the midpoint of TN .	2
	iii)	Show that the locus of <i>M</i> is the parabola $x^2 = \frac{a}{2}(y-2)$.	2
b)	The po	pint $A(2ap, ap^2)$ lies on the parabola $x^2 = 4ay$.	
	i)	Given that the normal at A passes through the point $R(-6a, 9a)$ show that $p^3 - 7p + 6 = 0$.	1
	ii)	Hence, find the values of p on this parabola at which the normals intersect	
		at <i>R</i> .	3

Question 4 (12 marks)

a) Find the exact equation (in general form) of the tangent to the curve $y = \sin^{-1}\sqrt{x}$ at the point where $x = \frac{1}{2}$.

b)

i) Differentiate
$$x \cos^{-1} x - \sqrt{1 - x^2}$$
 with respect to x. 2

3

ii) Hence evaluate
$$\int_{0}^{1} \cos^{-1} x \, dx$$
. 2

c) The area bounded by the curve $y = \frac{1}{\sqrt[4]{4-x^2}}$, the *x* and *y* axes and the lines x = 0 and $x = \sqrt{3}$ is rotated about the *x* axis. Find the volume generated in exact form. 2

d) Find showing all necessary working, the exact value of
$$\tan\left(2\sin^{-1}\left(\frac{-1}{4}\right)\right)$$
. 3

Question 5 (10 marks)

- a) What is the Cartesian equation for the parametric equations x = t 2, $y = t^2 4$? 1
- b) Tangents from the point $P(x_0, y_0)$ touch the parabola $x^2 = 4y$ at Q and R.

i) Prove that the midpoint *T* of *QR* is
$$\left(x_0, \frac{1}{2}(x_0)^2 - y_0\right)$$
. 5
ii) If P moves on the line $x - y = 1$, find the equation of the locus of *T*. 3

1

iii) Describe this locus geometrically.

EXT I HEC ASSESSMENT @ many forget to metiphy by 3. ie not using function of a function, correctly. $\frac{\text{Question}}{y = \cos^{-1}(3x-1)}$ $\frac{dy}{dx} = -\frac{1}{\sqrt{1-(3x-1)^2}} \times 3$ $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dy}{dx}$ $\sqrt{1 - (9x^2 - 6x + 1)}$ $\frac{dy}{dx} = \frac{-3}{\sqrt{6x-9x^2}}$ b) i) <u>[-1</u> dx $= \frac{1}{1+(\sqrt{3}x)^2}$ $= \frac{1}{\sqrt{3}} \frac{1}{\sqrt{$ mostery well done. $\frac{1}{1} \int \frac{x+2}{x^2+4} dx$ $\int \frac{x}{x^2+4} dx + \int \frac{2}{x^2+4} dx$ $= \pm \ln (x^2 + 4) + \tan^{-1} x + c$ c) $\int \frac{1}{\sqrt{4-x^2}} dx = \int \frac{1}{\sqrt{2^2-x^2}} dx$ mostly well done. $= \left[\frac{\sin^2 x}{2} \right]^{1/2}$ $= \frac{\pi}{6}$

0 | d) As y=sintx is many did not explain clearly how the odd fr area below and above has pt. symmetry. ie the are the x-axis cancels each other out. solue the x real below the axis each other out. e) Show that $\tan^{-1} x = \cos^{-1} \frac{1}{\sqrt{1+x^2}}$ mostly well done Let tan' x = x $x = \tan \alpha$ T (using rt. A) $\cos \alpha$ aut tari $x = \cos^{-1}$ à mostly well done 21 ティ poorly attempted (i) f c = 2 c = 1many did not make the connections between f'(s)=m=tano = -2 2: tan 0=-2 0-=14619 f10)= nearestmin

or (cant d) $A = \int 2\cos^{-1} \frac{x}{3} dx.$ some tried to integrate this $\frac{y = 2\cos^{-1}x}{x}$ directly rather than finding the crica at bounded by $\frac{3\cos y}{a} = x$ the curve and y-and or A=3 (cos y dy L $= 3x28in y \overline{y}$ SINIT - SINO = 6(1-0) $y = \tan^{-1}(\sin 3x)$ 6) dy the for statny pts dy = \therefore $3\cos 3x = 0$ $\cos 3x = 0$ 3× =-II, # $x = -\pi$ t t 0 many did not confirm/ test the nature of stationery points staty pt at (#)# staty pt at (# -0150 as it is an edd fr many incorrectly had ey=tan (sinx) 艺

QUESTION 3 2 $a\rho^2$ x^2 =4ay 40 at a 2ap nc x-200 - Q. wer done tap3 as regul 20 tangent 15: to find T and N $=ap^2$ at <u>c g</u> toget one marks. mixed up some α 0 to let x=0, 20 reculted in ero carried for pt M 20 + made it much herder. ap at <u>N</u> $p = \partial x$ igrared the 2ap2 many \mathcal{H} got correct d-JРО ers had correct Oh swert just 20 G Zo it to a 2 naiged Ò 201 £ convenience. - Marked very X <u>Dai</u> $\frac{a}{2}$ -Others totally___ 竹台市 locusof *ye*

 $(a3b) A(aap ap^2) x^2 = 4ay$ i)normal is: z+py= 2ap + ap³ thuo'(-ba, 9a): -6a + 9ap = 2ap + ap³ -6 + 7p = p³ No reed to dervé formul erganjust stale it. $-p^{3} - 7p + 6 = 0$ (as reg b) ìÎ) Let $f(p) = p^3 - 7p + 6$ f(i) = 0(p-1) is a factor may had trave First + hence $(p-1)p^{3}-7p+(p^{3}-p^{2}-p$ made it had to P2-70+6 P2-p complete. 6pt6 6p+6 $p^2 + p - 6 = (p - 1)(p^2 + p - 6)$ =(p-1)(p-2)(p+3)p=1,2,-3. QUESTION 4: a), y= sin 1/2 · many ded not use the $\int \frac{1}{\sqrt{1-\sqrt{z}^2}}$ chain role correctly here (yet did so in pt(b)) 2(x(1-x) 2 12-22 5,4 25 both <u>-'- m</u> $r x = 1 \quad y = sin^{-1} =$ $\frac{y = \pi}{4}$ -: <u>Y-I</u> = · general form has no fract in H! 4x4x-4g-2+T=0,

 $46); j = y = x \cos^{-1} x - \sqrt{1-x^2} \cdot \frac{1-x^2}{x}$ $y' = \cos^{-1} x - \frac{1}{x} - \frac{1-x^2}{x} \cdot \frac{1-x^2}{x}$ $y' = \cos^{-1} x - \frac{1}{x} - \frac{1-x^2}{x} \cdot \frac{1-x^2}{x} \cdot \frac{1-x^2}{x}$ $y' = \cos^{-1} x - \frac{1}{x} \cdot \frac{1-x^2}{x} \cdot \frac{1-x^2}{x} \cdot \frac{1-x^2}{x}$ $= \cos^{-1}x - x + x$ $\sqrt{1-x^2} \sqrt{1-x^2}$ $y^{\perp} = \cos^{-1} x$ ii) (cos x dx mostly well done - many $= \frac{x \cos^{-1} x - \sqrt{1 - x^2}}{(\cos^{-1} 1 - 0) - (0 - 1)}$ = 0 + 1 = 1got -1 as an answer because They didn't use brackets appropriately. $\frac{(c) V = \pi \int_{-\infty}^{\sqrt{3}} dx}{\sqrt{4 - x^2}} dx$ " some strange variants on this $= \pi \left[\frac{1}{2} \frac{1}{2} \right]$ standard integration - use. the Tables of Standard Integral $= \pi \left[\frac{1}{\sin^{-1} \mathbf{B}} - \frac{1}{\sin^{-1} \mathbf{O}} \right]$ provided! $=\pi\left(\frac{\pi}{3}-0\right)$ $V=\frac{\pi^{2}}{3}$ (a) ton $\left(\frac{\partial \sin^{-1}(-1)}{\partial \sin^{-1}(-1)}\right)$ = $-\tan\left(2\sin^{-1}(-1)\right)$ let $\sin^{-1}(-1) = x$ $-\frac{1}{2} \sin^{-1}(-1) = x$ now ton $\left(2\sin^{-1}(-1)\right) = -\tan 2x$ many errors here usually relasted to not understanding He restricted domain/range when dealing with inverse trig functions. =- 2tena 6 Also simple trig identity 1-ton201 errors with sin(-x) = -sinx=-2×15 V $\tan(-x) = -\tan x$ Y. many had 1+ tan 2 x for their denominator! ta (2815 (1))=7.15

7. Questo 5: t2-4 x=t-2 y= To obstain mark t = x + 2 $y = (x + 2)^2 - 4$ students had to = x2+4x+4-14 have in simplified form : 4=x2+4x/V $x^2 = 4ay$ $x^2 = 4y$ q=1LetRie (dar, an2) = R(2n, 12) QLe (200, 002) =) Q (29,9²) $m_{RQ} = \frac{r^2 - q^2}{2r - q^2}$ Students attempted 21-20V various ways = (-q)(+q) = 2(+q)) of doing this Q T pag, ag (Jarjar and often got = May into a real mess mRQ P(xoj) Ch QR 2- Agin $y - q^{\chi} = \frac{2}{(r+q)\chi} - q^{\chi} - q$ ×(N+q) 2(y+qr) Now eer of chord from extend is zzo = le zzo = comparing (29 (type) Xo= Hg and yo New michet of QR: (qtr, 1249,2) (qtr, (Mig)2-2rg) $= (x_0) \frac{1}{2} (x_0)^2 - \frac{1}{2} \frac{$

8. ii) If P more x-4= th $x_{a} = 1$ yo - V Locus of T: x=xo; y=(xo)2 - y $=\frac{1}{2}(x_{0})^{2}-(x_{0})$ x2-(x-1 =1 2+1 12-220+1 2-17+3 y-1 =1 2-24-1 (x-1)² 2(4-1 Ť cus is in) this is a poratola (concoverp) Need to give V(1) =od leghe - Innt more information other than it is a parabok